SOAR: AN EXTENSIBLE SUITE OF CODES
FOR WELD ANALYSIS AND OPTIMAL WELD SCHEDULES

G. R. Eisler*, P. W. Fuerschbach†

www.sandia.gov/soar/

ABSTRACT

Four MATLAB-based software applications called SOAR (Smartweld Optimization and Analysis Routines) have been developed to do weld analysis and provide optimal weld schedules for CO₂ continuous wave laser welding, pulsed Nd:YAG laser welding, and for non-consumable arc welding processes. The optimization methodology consists of mixed genetic and gradient-based algorithms to query semi-empirical, nonlinear algebraic models. The optimization output provides heat-input-efficient welds for user-specified weld dimensions. User querying of all weld models is available to examine sub-optimal schedules. The inclusion of thermodynamic properties allows the extension of the empirical models to include materials other than those tested. In addition a heat conduction equation solver for 2-D heat flow is available to provide the user with an additional check of weld thermal effects. All solution methods are provided with graphical user interfaces and display pertinent results in two and three-dimensional form. The code architecture provides an extensible framework to add an arbitrary number of modules. The modules have been developed as integral parts of the Smartweld engineering system.

INTRODUCTION

It has been a goal of advanced manufacturing initiatives at Sandia to provide model-based applications to reduce the design cycle time. In pursuit of this objective, a set of MATLAB-based computer codes, SOAR (Smartweld Optimization and Analysis Routines) has been developed to aid the welding engineer. The contents cover solution methods to generate optimal weld schedules for:

- CO₂ continuous wave laser welding (Fig. 1)
- Plasma or gas-tungsten arc welding
- Pulse Nd:YAG laser welding

For these applications, weld schedules represent the constant-value settings on the device for output power \(q_o \) or energy delivered \(Q \), part travel speed \(\upsilon \), and in the laser-device cases the focusing lens size \(f \). In addition a fourth application has been written to provide graphical solutions to a two-dimensional (2-D) steady-state, heat conduction equation. Results of the constant-value weld solutions provided by the “scheduling” applications can be entered into this application (dubbed ISO) to provide the engineer with a geometric check of weld thermal effects.

Figure 1. CO₂ Laser weld in progress
Since an important goal of Sandia’s manufacturing initiatives is model-based design, it was felt that more software tools were necessary to make the specialized knowledge more accessible to the weld community. Smartweld is a concurrent engineering system developed at Sandia National Laboratories that integrates product design and processing decisions within an electronic desktop engineering environment. An application for CO$_2$ laser welding (Ref. 1) was an initial component for this system. Based on models given in Ref. 2, additional weld schedule applications were able to be brought on-line. All have implemented the following approach:

1. Formulate a semi-empirical, input response model of the weld process. (A conceptual model is shown in Fig.2) These may consist of pure polynomial fits of experimental data, or may be parameterized extensions of relations developed in the literature to better fit experimental data. Model expansions to other than the experimentally-tested materials is accomplished via the embedding of thermodynamic properties within the model. The use of numerical scaling may be relied upon to achieve better data fits.

2. Use a combination of genetic and gradient-based optimization algorithms to invert the model by solving for the inputs to provide an “optimal” response. A surface of possible responses for a “grid” of inputs is shown in Fig.3. Typically, the optimal solution is one that maximizes an efficiency metric (i.e., Melting Efficiency, which can also be interpreted as minimizing heat input), while simultaneously yielding a weld of given depth/width dimensions.
The use of a mix of optimization algorithms stems from the fact that genetic-based methods can survey a wide range of solution possibilities efficiently, and are thus better disposed towards finding the most promising region in the solution space from which a gradient-based scheme can converge quickly to the final optimal solution. Numerical scaling was used to aid the searching algorithms when various quantities were disparate in magnitude.

Figure 3. A Weld Response Surface

3. Provide 2-D and three-dimensional (3-D) presentations to allow the weld engineer to assess how this type of solution, which may not always be intuitive, fits in with qualitative metrics such as weld appearance, past experience, and equipment capability.

All applications were written in MATLAB (Ref. 3) which provides integrated “number-crunching”, graphics, and graphical-user-interface (GUI) routines. The applications were separately launched from the SOAR “executive” control panel in Fig.4. The architecture of this panel allows the addition of an arbitrary number of analysis modules to cover future needs. The applications will be covered in the ensuing sections.

To access this panel:
1. Enter MATLAB
2. Type: **soar** (lower case) at the command prompt

Figure 4. The SOAR Executive Control Panel

THE OSLW APPLICATION

The Optimization Software for Laser Welding (OSLW) application was the first developed and is explained in detail in Ref. 1. It will be summarized briefly here. For this study, the desired response characteristics are concerned with heat input efficiency on a given metal, while attaining a user-specified weld geometry. Weld schedules consist of constant values over a given weld for: 1) laser output power \(q_o \) in watts, 2) part travel speed \(v \) in millimeters(mm)/second(sec), and 3) laser focusing lens focal length characterized by spot diameter \(d \) in centimeters (cm).

In the context of laser welding, \(q_o \) and \(v \) can be considered to vary continuously over a given range. However, spot diameter, \(d \), corresponds to only a select few *discrete* lens focal lengths. It was decided to model four output *responses* or *process variables* as functions of the weld schedule (WS) parameters, \(q_o \), \(v \), and \(d \). These quantities were:
1. energy transfer efficiency (η_t, dimensionless), defined as the ratio of net heat input to the part to the incident energy produced by the power source.

2. melting efficiency (η_m, dimensionless), defined as the ratio of the amount of heat required to just melt the fusion zone to the net heat input deposited in the part. Slow travel speeds usually encountered in manual welding operations result in low melting efficiency.

3. top width of the weld (W, mm). Area of the weld is used for the thermodynamic calculation and a parabolic, weld shape approximation was used to map area to width.

4. weld penetration depth, (P, mm).

For CO$_2$ laser welding, the weld schedule (WS) implies the triple, q_o, υ, d. The method proposed for generating optimal weld schedules required a parameterized, algebraic model to relate the WS to the responses, η_t, η_m, W and P. Experimental input-response data for 126 different welds for the 304 stainless steel, 1018 steel, and tin were fit with a nonlinear least-squares algorithm. The parameters in the algebraic model were computed to minimize the sum of the squares of the errors (i.e., the least-squares fit) between experimental responses (η_t, P_i for the ith weld) and those from the model. Given η_t and P, then η_m and W were generated from known relations. Extensions to molybdenum, nickel, and titanium were done via the use of material thermal diffusivity, α, and enthalpy of melting, δh, values embedded in the model. The final response model was given by the following:

$$
 \begin{align*}
 P &= \frac{c_1 q_o}{c_2 \upsilon c_3} \\
 \eta_t &= c_4 - c_5 \left(2 \arctan(c_6 d / P) \right) \\
 R_y &= \frac{q_o \upsilon c_7}{c_8 h} \\
 \eta_m &= c_9 + c_3 e^{\frac{c_10}{c_11 \upsilon R_y}} \\
 Area &= \frac{R_y \eta_m \alpha^2}{\upsilon^2} \\
 W &= \frac{3 Area}{2 P}
\end{align*}
$$

Numerical constants, c_i, are those found via least-squares data fitting. R_y is the Rykalin parameter Ref. 4.

Given the parameterized model which provides the best "least-squares" fit to the experimental data, a genetic algorithm optimization method was used in consort with either a gradient-based optimization scheme or a nonlinear algebraic solver to find the WS to solve the following problems,

<table>
<thead>
<tr>
<th>Performance Metric Goal</th>
<th>Weld Specifications</th>
<th>Solution Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.Maximize η_t</td>
<td>$W_{desired}$, $P_{desired}$</td>
<td>genetic w/nonlinear algebraic solver</td>
</tr>
<tr>
<td>2.Maximize η_t</td>
<td>$P_{desired}$ only</td>
<td>genetic w/nonlinear optimization</td>
</tr>
<tr>
<td>3.Maximize η_m</td>
<td>$W_{desired}$, $P_{desired}$</td>
<td>genetic w/nonlinear algebraic solver</td>
</tr>
<tr>
<td>4.Maximize η_m</td>
<td>$P_{desired}$ only</td>
<td>genetic w/nonlinear optimization</td>
</tr>
<tr>
<td>5.Maximize $\eta_t^*\eta_m$</td>
<td>$W_{desired}$, $P_{desired}$</td>
<td>genetic w/nonlinear algebraic solver</td>
</tr>
<tr>
<td>6.Maximize $\eta_t^*\eta_m$</td>
<td>$P_{desired}$ only</td>
<td>genetic w/nonlinear optimization</td>
</tr>
</tbody>
</table>
Maximize: $\eta_t(q_o,\nu,d)$, or $\eta_m(q_o,\nu,d)$, or $\eta_t^*\eta_m(q_o,\nu,d)$

Subject to: $W_{desired} - W(q_o,\nu,d)=0$ and/or $P_{desired} - P(q_o,\nu,d)=0$

where the quantities followed by (q_o,ν,d) imply model responses resulting from the "constant" WS parameters. The optimization space is discontinuous due to the discrete variable, d, and would appear as separate surfaces in a vertical stack (one of which is shown in Fig.3). The largest lens ($f = 7.5''$, $d = .0294$ cm) produces the lowest efficiencies and would be at the bottom of the stack. If d had been continuous, this "space" would have appeared "solid". The gist of our optimization effort is to "jump" to the highest surface (which corresponds to the lowest value of d), which will simultaneously yield a bounded WS solution to satisfy the $(P_{desired}$ and $W_{desired}$, $P_{desired}$) constraints.

In the genetic algorithm (GA), the $W_{desired}$, $P_{desired}$ constraints were attached as a quadratic penalty function onto the performance metric to form a composite metric. The GA treats all values of q_o,ν,d as discrete, makes up various combinations of them (members of the population), and evaluates the composite metric according to the response model. It then chooses the highest value after a designated number of population or "generation" changes. In Ref. 1 the entire problem was solved with the GA, but it was felt that the solution was too time-consuming for an adequate convergence of the search. However, it was found acceptable for narrowing the response space for initializing a gradient scheme.

Since gradient schemes necessitate continuous parameters (i.e., variables), it was necessary to reformulate the discrete optimization problem as a continuous one. The solution was to pose the following two types of problems:

1. $W_{desired}$, $P_{desired}$ specified: For each value of d, solve for the q_o,ν combination that algebraically solves the constraint equations

 $W_{desired} - W(q_o,\nu,d)=0$ $P_{desired} - P(q_o,\nu,d)=0$

 Since d is known, this reduces to solving two nonlinear algebraic equations in two unknowns. Then, sort the solutions that produce acceptably small residuals in the constraint equations to find the desired maximum according to whichever "efficiency" criterion (mentioned previously) was chosen. This was accomplished using a Newton-type solution algorithm. The analyst should note --> not all $W_{desired}$, $P_{desired}$ combinations are possible. An intersection of the contours for a given d is needed to produce a solution.

2. $P_{desired}$ only specified: For each value of d, solve for the q_o,ν combination that

 Maximizes: the efficiency criterion of interest (i.e. η_t, η_m, or $\eta_t^*\eta_m$)

 Subject to: $P_{desired} - P(q_o,\nu,d)=0$

 Then sort the solutions that produce acceptably small residuals in the single constraint to find the desired maximum according to whichever "efficiency" criterion was chosen. This was accomplished using a MATLAB routine to do nonlinear programming.

The capability developed for optimization and graphical model output can be most effectively used by integrating them via GUI tools (available in the MATLAB system). The GUI panel in Fig.5 al-
lows the user to:

1. Select any of presently seven metals (304 stainless steel, 304L stainless steel, 1018 steel, tin, nickel, titanium, molybdenum) to analyze.

2. Plot any of five “responses” from the model \((\eta_l, \eta_m, \eta_l^*\eta_m, W, P)\). Surfaces are plotted as continuous functions of \(q_o\), \(\nu\) and as a discrete function of \(d\). Contours appear as labeled iso-curves of the given response variable, continuous in \(q_o\), \(\nu\), and for a single value of \(d\).

3. Obtain the nearest optimal weld schedule for user-specified, \(W_{\text{desired}}\) and/or \(P_{\text{desired}}\).

4. Display the assumed weld shape as it is changed by the user or the completed solution.

5. Get continuous weld model output via “mouse-down” button clicks on the 2-D contour plots.

6. Get text help describing the application.

Item 5 provides the analyst with the flexibility to choose an alternative weld schedule. The optimization algorithms are configured to attain the extremum, be it minimum or maximum, regardless of the cost in terms of \(q_o\), \(\nu\). If an efficiency response can be further improved or “optimized” by a few percent for a large increase in \(q_o\) or \(\nu\), then that is what the algorithm will recommend. It is up to the analyst to decide whether this recommendation is practical.

THE ARC APPLICATION

Response characteristics for plasma-arc or gas-tungsten arc welding are concerned with minimizing heat input on a given metal, while attaining a user-specified weld depth for an assumed semi-circular weld cross-section. The schedules are produced by applying parameter optimization to the mathematical model in Ref. 4. Weld schedules consist of:

1. laser output \((q_o)\) power in watts with a range of 100-2000, and

2. part travel speed \((\nu)\) in millimeters(mm)/second(sec), with a range of 1-50.

For arc welding, \(q_o\) and \(\nu\) can be considered to vary continuously over given ranges. It was not necessary to scale the model for this application.

Three output responses were modeled as functions of the WS parameters, \(q_o\), \(\nu\). These quantities were: 1) melting efficiency \((\eta_m,\) dimensionless), 2) top width of the weld \((W, \text{mm})\), and 3) weld penetration depth, \((P, \text{mm})\). The weld cross-sections are assumed semi-circular and therefore \(W=2P\).
Figure 5. The OSLW Laser Application

Graphical Displays

Weld Model Query

Parabolic Shape Display

Best Answer Section

Plot Specifications

Weld Optimization Specifications

Specifications

Weld Width (mm) 1.494
Penetration Depth (mm) 1.5
Output Power (watts) 641.6
Travel Speed (mm/sec) 15
Focusing Lens (in) 2.5
Spot D (cm) 0.0119

For information contact:
R. Eikler, reiko@lanl.gov, B. Fuerthschein, btfu@lanl.gov
The following is the nonlinear algebraic, plasma-arc model

\[
R_y = 0.8 \frac{q_o \rho}{\alpha \delta h} \quad \eta_m = c_7 + c_8 e^{\frac{-R_y}{c_9}} + c_9 e^{\frac{-R_y}{c_10}} \quad (2)
\]

Note that the \(R_y\) relation used here assumes a constant \(\eta_t = 0.8\). The gradient-based, non-linear optimization algorithm (in MATLAB), described previously, was used to find the WS to solve the single problem available for this application:

Maximize \(\eta_m\) for \(P_{\text{desired}}\) only.

To compensate for initial guess sensitivity, this single problem was solved for five different sets of initial conditions which represent the boundaries of the ranges on \(q_o, \nu\). The solutions were sorted for those that produced acceptably small residuals in the single constraint and of these the one which maximized \(\eta_m\) was chosen. The ARC user-interface was patterned on that of the CO2 application and is not shown.

THE YAG APPLICATION

Response characteristics for Nd: Pulsed YAG welding are concerned with minimizing weld-induced temperature on a specific component, while attaining user-specified weld dimensions for an assumed parabolic-shape weld cross-section. The schedules are produced by applying parameter optimization to a mathematical model obtained in Ref. 5 for 304 stainless steel. Weld schedules consist of constant values over a given weld for: 1) peak power in watts \((q_p)\), 2) energy in joules \((Q)\), and 3) lens focal length in mm \((f)\).

\(q_p\) and \(Q\) can be considered to vary continuously over given ranges. \(f\) is discrete as in the CO2 application. It was necessary to scale the model for this application because of the magnitude disparity on \(q_p\) and \(Q\). Three output characteristics were modeled as polynomial functions of the WS parameters, \(q_p, Q, f\). These quantities were: 1) temperature \((T, ^\circ C)\), 2) width of the weld \((W, \text{mm})\), (converted from area via a parabolic shape approximation), and 3) weld penetration depth, \((P, \text{mm})\).

The polynomial functions, for a given \(f\), are of the form

\[
T = t_1 + t_2 Q + t_3 q_p + t_4 Q^2 + t_5 q_p Q + t_6 q_p^2
\]

\[
\text{Area} = a_1 + a_2 Q + a_3 q_p + a_4 Q^2 + a_5 q_p Q + a_6 q_p^2
\]

\[
P = p_1 + p_2 Q + p_3 q_p + p_4 Q^2 + p_5 q_p Q + p_6 q_p^2
\]

(3)

where the coefficients \(t_i, a_i, p_i\) are found via least-squares fitting of experimental data. Since \(W\) is generated for a parabolic cross-section model, \(W = (3\text{Area})/(2P)\). Travel speed \((\nu, \text{mm/sec})\), pulse duration \((\tau, \text{msec})\), pulse frequency \((\nu, \text{Hz})\) are also computed, based on an average power of 200 watts. These relations are:
The gradient-based optimization and nonlinear algebraic solver schemes described previously for CO$_2$ were used to find the WS to solve the problems:

1. **Minimize** T, **Subject to**: $P_{desired}$ only (nonlinear optimization at each value of f with sorting over lens f for minimum T).

2. **Minimize** T, **Subject to**: $W_{desired}$, $P_{desired}$ (nonlinear algebraic solution at each value of f with sorting over f for minimum T)

The solutions were sorted for those that produced acceptably small residuals in the constraints and of these the one which minimized temperature was chosen. Due to the fact that the ranges of q_p, Q were discontinuous (i.e., depending on the value of f), the genetic algorithm was used to provide an initial guess for the sub-WS (q_p, Q) each time a new value of f was considered. The YAG user-interface was patterned on that of the CO$_2$ application and is not shown.

THE ISO-2D APPLICATION

This application computes constant temperature contours due to saturation from a heat source according to the 2-D steady-state, heat-flow equation as derived by Rosenthal (Ref. 6). The 2-D model arises from modeling the welding of thin sheets where the temperature variation is considered negligible in the thickness direction. The steady-state description is derived from welding a plate whose dimensions are large with respect to the size of the contours. A schematic is shown in Fig.6.

Easy access to temperature isotherms for a given set of welding conditions provides the optimization user with an additional check of weld thermal effects. While melting efficiency indicates how effective a given weld schedule is in minimizing heat input to the part, the Rosenthal analysis graphically presents the resulting temperature distribution and indicates the geometric extent of the weld heat input.

![Figure 6. Schematic of the 2-D steady-state, heat-flow problem](image-url)
The Rosenthal analytical solution is

\[
\frac{2\pi(T - T_o)k_s t}{Q} = e^{\left(\frac{\nu x}{2\alpha_s}\right)}K_0\left(\frac{\nu r}{2\alpha_s}\right)
\]

where the following are input by the user via the GUI-driven application,

- \(T\) = contour temperature of interest (deg C)
- \(T_o\) = base metal temperature
- \(k_s\) = thermal conductivity of metal (Joules/(meter-sec-deg C))
- \(t\) = thickness of metal plate (mm)
- \(Q\) = energy (heat) input to the metal (Joules)
- \(\nu\) = welding speed (mm/sec)
- \(\alpha_s\) = thermal diffusivity of metal (meters\(^2\)/sec)

\(K_0\) is the modified Bessel function of the second kind and zero order (a MATLAB function) and \(e\) is the exponential operator. The variable, \(r\), radial distance from origin ((\(x^2 + y^2\))\(^{1/2}\) in millimeters), is manipulated by the application.

The contour solution reduces to solving the above nonlinear algebraic equation as follows:

1. solve the equation: \(c_1 - e^{c_2 x}K_0(c_2 x) = 0\) for \(x = x_{\text{min}}, x_{\text{max}}\) using a nonlinear solver, where the constants \(c_1 = (2\pi*(T - T_o)*k_s*t)/Q\) and \(c_2 = \nu/(2*\alpha_s)\). \(y(x_{\text{min}}) = y(x_{\text{max}}) = 0\).

2. solve for the intermediate \(x\) values on the top half of the contour by inputting a range of \(r\) values, \(\text{abs}(x_{\text{min}}) < r < x_{\text{max}}\), and solving \(x = 1/c_2*ln(c_1/K_0(c_2*r))\), and then the corresponding \(y = (r^2 - x^2)^{1/2}\). \(ln\) is the natural logarithm.

A complete contour is constructed by reflecting the top half and is approximately elliptical in shape. The ISO user interface is shown in Fig. 7

THE ISO-3D APPLICATION

This application computes constant temperature contours due to saturation from a heat source according to the 3-D steady-state, heat-flow equation as derived by Rosenthal (Ref. 6). The 3-D model assumes infinite thickness workpieces with symmetric, body-of-revolution temperature contours.
The Rosenthal analytical solution is

\[
\frac{2\pi(T - T_o)k_s r}{Q} = e^{\left(\frac{\nu(R - x)}{2\alpha_s}\right)}
\]

where the following are input by the user via the GUI-driven application,

- \(T\) = contour temperature of interest (deg C)
- \(T_o\) = base metal temperature
- \(Q\) = energy (heat) input to the metal (Joules)
- \(\nu\) = welding speed (mm/sec)

\(e\) is the exponential operator. The variable, \(r\), radial distance from origin \((x^2 + y^2 + z^2)^{1/2}\) in millimeters, is manipulated by the application. \(x\) is the welding axis and contours are symmetric with respect to it. Solutions for contour coordinate triplets \((x, y, z)\) can be generated analytically. Graphical output includes that shown for the 2-D solutions as well as a 3-D perspective shown in Fig. 8.

SUMMARY AND CONCLUSIONS

Computational methods have been developed to provide optimal weld schedules based on semi-empirical mathematical models. The mathematical relations in the models originated from past research and were modified to provide best least-squares fits to experimental data. Model extension to other metals was provided through the use of thermodynamic constants. Genetic algorithms were used to provide initial guesses to gradient-based solution schemes. Gradient schemes were used to provide tight convergence on specified weld dimensions as well as optimize various performance indices. Solution algorithms work well provided that the required width and penetration specifications co-exist. In addition, the Rosenthal 2-D heat flow equation was solved to produce a geometric view of weld effects. GUI-driven input-output interfaces were provided for all applications. Future applications can be added in a straightforward manner to the MATLAB architecture.
Figure 7. The ISO-2D Application GUI
ACKNOWLEDGEMENTS

This work was performed at Sandia National Laboratories, which is operated for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000

REFERENCES

